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J. Phys. A: Math. Gen. 15 (1982) 3313-3328. Printed in Great Britain 

Dynamics of Bloch electrons in external electric fields: 
11. The existence of Stark-Wannier ladder resonances 

A Nenciul. and G NenciuS 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, SU-141980, 
Dubna. USSR 

Received 25 March 1982 

Abstract. The problem of the existence of the Stark-Wannier ladder for the Bloch electrons 
in homogeneous electric fields is considered. If the direction of the electric field coincides 
with one of the reciprocal lattice vectors, as is well known, the Hamiltonian of the problem 
can be written as a direct integral of one-dimensional-like Hamiltonians. For these 
Hamiltonians, the existence of Stark-Wannier ladders of well separated resonances is 
proved. The wavefunctions corresponding to these resonances are shown to decay 
exponentially along the field direction. 

1. Introduction 

This is the second in a series of papers dealing, at a rigorous level, with the dynamics 
of the Bloch electrons in external electric fields. The Hamiltonian of the problem is 
of the form 

H" = Ho + EXO E = e E  

where Ho = -A + V,,, is the 'unperturbed' periodic Hamiltonian, and EXO = eEnx, 
In1 = 1, is the potential energy of the electric field. In this paper, we shall consider 
the controversial problem of the existence of the Stark-Wannier (sw) ladder. 
Originally, it was believed that an sw ladder exists in the following sense: in the 
Hilbert space of states X, there exists a 'one-band' subspace X such that X is invariant 
under H e  (i.e. with respect to the decomposition X = X @ X L ,  H" takes a diagonal 
form) and H" restricted to X has a discrete spectrum of the form a f p ~ n  where a, 
p are constants, n = 0, k l ,  *2, . . . . In the one-dimensionai case (and very probably, 
also in the three-dimensional case), this possibility is ruled out by the fact that the 
spectrum of H" is absolutely continuous (Avron et a1 1977). So, if the sw ladder 
exists, its levels must, in fact, be resonances. This situation can be viewed as follows. 
The subspace X (which actually can depend on E )  is not exactly invariant under H e ,  
but only 'asymptotically' invariant (see Nenciu (1981) for a precise definition) in the 
sense that the non-diagonal part of H" is a bounded operator of order E ', p > 0. In 
this case, even if the 'one-band' Hamiltonian P,HhP,, where P, is the orthogonal 
projection on X, has a discrete spectrum, the 'tunnelling' due to the non-diagonal 
part of H E ,  P,H'( l -P , )  +HC results in a finite width of the levels. Let A, be an 
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eigenvalue and the corresponding eigenfunction of P,H"P,. If, following Avron et a1 
(1975), we take 

y 2  - ((H' (H' -A)+,,) E ( A A ) ~  

as a measure of the width, then 

Y - (+A 9 ( P ~ H  E ( 1 - pE + HC) 4 A  ). 
Clearly, in order that the level structure of PEH'P, is not washed by the effect of the 
non-diagonal part, it is necessary for y to be smaller than the level spacing. All the 
existing derivations use as X the subspace corresponding to an isolated band of Ho 
either simple or composed by mutually non-intersecting branches (Avron et a1 1977, 
Avron 1979, Callaway 1974, Hacker and Obermair 1970). The rigorous derivations 
are for one-dimensional systems, although the results can be extended to the three- 
dimensional case (see, however, the discussion below) if the localised Wannier func- 
tions corresponding to the considered band are supposed to exist (see Kohn (1959), 
des Cloizeaux (1964) for the problem of the existence of Wannier functions). In all 
cases considered, the spacing between the sw levels is of order E ,  and y is also of 
the order E (Avron et a1 1975). This fact has led Avron et a1 (1975) (see also Zak 
1969, Rabinovitch and Zak 1971, Zak 1972) to the conclusion that the existing 
derivations of the sw ladder are inconclusive. This controversy generated a lot of 
approximate and numerical computations (Berezhkovskii and Ovchinnikov 1976, 
Banavar and Coon 1978, Nagai and Kondo 1980, Bentosela et a1 1981), all of them 
indicating the existence of well separated sw resonances. In order to clarify this 
problem, one needs to prove that: 

(i) one can choose X such that the non-diagonal part is of the order of E ' + ~ ,  

p > 0; and 
(ii) the spectrum of P,H"P, has the structure of an sw ladder, with spacing between 

levels of the order E .  

Problem (i) has been solved in the previous paper (Nenciu and Nenciu 1980, 1981) 
substantiating an old idea (Kane 1959, Wannier 1960) that one can redefine the bands 
of H' such that the non-diagonal part of H E  is of the order E " + ' ,  n being a positive 
integer. More exactly, we constructed recurrently a sequence of periodic operators 
H,,(E), n = 0, 1 ,2 ,  . . . , HO(&) = Ho, such that the non-diagonal part of H E  with respect 
to the bands of H,,(E) is bounded and of the order E " + ' .  Moreover, the bands of 
H,(E) go smoothly to the bands of Ho as E + 0. The diagonal part of H" is an 
orthogonal sum of 'one-band Hamiltonians' HZ ( E )  ( i  being the band index) which 
we have called 'effective Wannier Hamiltonians' of order n. 

In this paper we shall consider problem (ii). In contradistinction to the previous 
papers on the sw ladder, we shall consider the general, multi-dimensional case. We 
shall assume that the direction of the homogeneous electric field coincides with one 
of the reciprocal lattice vectors. Consequently, since the components of the crystal 
momentum perpendicular to the direction of the electric field are constants of motion, 
the problem can be reduced to the one-dimensional one, and, in what follows, we 
shall discuss this reduced problem. At this point we should like to stress that the 
reduced one-dimensional problem has special features compared with the true one- 
dimensional problem and these features complicate its study. First, the Hamiltonian 
is not a differential operator, and therefore one cannot use the powerful theory of 
ordinary differential equations, in particular, we cannot use the deep results of Kohn 
(1959). Second, while for the true one-dimensional systems the degeneracy of bands 
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is an accidental phenomenon, for the three-dimensional systems, and then for the 
corresponding reduced one-dimensional problems, the degeneracy of bands is the 
generic case, and so we are forced to deal with intersecting bands. We shall prove 
that H:( (E)  is a direct integral (over the components of the crystal momentum 
perpendicular to the electric field) of operators, whose spectrum consists of m inter- 
twined ladders, all with the same spacing of the order of E ,  m being the degeneracy 
of the corresponding band. As to the eigenfunctions, we shall prove that they are 
exponentially localised along the direction of the field. This exponential localisation 
plays an important role in understanding the Zener and Franz-Keldysh effects. 

Two remarks are in order. First, as has been anticipated by Wannier (1969), the 
theory of the sw ladder, as it is developed here, parallels, to some extent, the theory 
of the Stark effect in atoms, both of them being particular cases of the same general 
mathematical theory (Nenciu 1981). Second, as has been stressed by Wannier 
(1960), the analysis gets into difficulty, if the direction of the field does not coincide 
with that of the reciprocal lattice vectors. Even if this does not happen, since the 
spacing between levels is proportional to the inverse of the linear dimension of the 
Brillouin zone along the field direction, we deal with an sw pattern, varying erratically 
for infinitely small variations in angle. This fact led Wannier (1960) to question the 
‘physical reality’ of the sw ladder in three dimensions. The discussion of this point 
is beyond the scope of this paper and will be discussed in a subsequent paper of this 
series. 

Section 2 contains the proofs of some spectral properties of Ho. We believe that 
some results in § 2, especially proposition 2, are interesting in themselves. Section 3 
contains the spectral analysis of H Z  ( E ) .  

2. The construction of quasi-Bloch functions 

The ‘unperturbed’ periodic Hamiltonian is 

Ho= -A+ V,,,. (2.1) 
As for the periodic potential, we shall assume that it is local and square integrable 
over the unit cell. 

Let {ai}?=1 be a basis in R3 and {K,}?,, be the dual basis, i.e. 

aiKj = 21rSij. 

Without loss of generality, we shall take the length of K1 to be 21r. Let Q be the 
basic period cell for the basis {a i }  and B be the basic period cell for {Ki} (the Brillouin 
zone). The fact that IK1( = 27r means that the length of the Brillouin zone along the 
K1 direction is 2i7. 

Theorem 1. (Reed and Simon 1978). Let V be a real function on R3 with 

V ( x  +ai) = V ( x )  i = 1 , 2 , 3 .  

Let 
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Suppose VcL2(Q)  and Qm(m = (ml, m2, m3)) are the Fourier coefficients of V as a 
function on Q, i.e. for m E H3, 

3 

Q,,, = ( v o l ~ ) - l  J exp( - i  J = 1  c m , ~ ~ x )  ~ ( x )  d*. (2 .5 )  
0 

For k E C3, define the operator Ho(k) in %" by 

with the domain 

Then : 
(i) for k E R3, Ho(k)  is self-adjoint, 
(ii) Ho(k)  is an entire analytic family of type A, 
(iii) for k E C3, Ho(k)  has a compact resolvent, and 
(iv) let U: L2(R3, dr) + 2' be given by 

Then U is unitary and 
8 

UHOU-' = Ho(k)  dk. 

Proof. For the proof of this theorem, see Reed and Simon (1978) .  

In what follows, k l ,  k2 ,  k3  denote the coordinates of k with respect to the basis 
K.lKil-l. We are interested in the properties of Ho(k)  as a function of kl at kL = ( k z ,  k3) 
fixed. In order to emphasise this fact, we shall write 

Ho(k1, k,) =Ho,&L(kl) 
and, moreover, in the cases when no confusion is possible, we shall omit k,. 

Let v ( k l )  be the (discrete) spectrum of Ho(kl ) .  

Definition. A non-void part a o ( k l )  of v ( k l ) ,  kl E [0 ,27r]  is said to be an isolated band 
of Ho(kl )  if there exist continuous functions on [0 ,27r] ,  f l (kl) ,  f z ( k l )  and a positive 
constant c > 0, such that 

--oo <fl(kl)  <fi(kl)  c 00 

Cfi(kd - c, h(kd + c l  n d k l )  = 0 

a0(k1) = [fl(kl), fZ(k1)l 

i = l , 2  kl E [O,  2 T ] .  

From the physics textbooks (Kittel 1963) one can learn that, at least for non- 
degenerate bands, ao(kl )  is the restriction of a periodic function. The precise statement 
(which is probably folk-lore, but we do not know a proper reference) is as follows. 
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Let Jd be the strip IIm kll < d,  Re kl E [W. 

Proposition 1 .  Let a i , ( k l )  be an isolated band of &,k,(kl). Then: 
(i) There exist positive integers m, p; p s m ;  functions hi (k l ) ,  j = 1, 2 , .  . . , p 

analytic in the strip Jd and real for kl E R; positive integers rlr . . . , r, satisfying 
ZY='=, ri = m, such that 

ai, (kt) = {Ai(kl)}Y= I kl E [0,2.rrI 
each h i ( k l )  having multiplicity ri. 

a period at most 2n-p. 
(ii) The set {A i (k l ) } f= l  is periodic with period 27r, and each h i ( k l )  is periodic with 

Remarks. (1) Note that the existence of some points for which two or more of the 
functions hi (kl) have the same value (intersection or degeneracy points) is allowed. 
The number of degeneracy points in [0,27r] is finite due to the analyticity properties. 

Proof. Let V : &p'+ 2%" be the unitary operator given by 

( V+)ml.mz.mj = +ml-l,mz.ma. (2.9) 
Since V is unitary and 1 is not an eigenvalue of V, there exists a unique self-adjoint 
operator M, such that IlMll d 1 and 

V = exp(2.rriM). (2.10) 

V(kl) = exp(iklM) k1EC (2.11) 

The bounded operator valued function 

is obviously an entire function. 
Consider the following family of operators 

KO,k,(kl) = V(kl)HO.k,(kl) V-l(k1). (2.12) 
A simple but tedious calculation shows that 

KO,k,(kl) = KO,k,(kl+ 27r). (2.13) 

Since Ko,k,(kl)  and &,k,(kl) are unitary equivalent, they have the same spectrum 
and then a ( k l )  3CT(H0,kl (kl)) as a set, is periodic, i.e. 

a ( k , )  = a(k1+27r). (2.14) 
Defining ao(k l )  for all kl E R by periodicity, it follows that a o ( k l )  is isolated for all 
kl E R and 

dist(aO(kl), a(kl)/a0(kl)) a c  > 0 all kl E R. 

Now, the existence of Ai(kl) ,  as well as their analyticity properties, follows from the 
theory of perturbation for analytic families of type A (Reed and Simon 1978). In 
particular, the analyticity of hi (k l )  at the degeneracy points follows from the famous 
Rellich theorem (Reed and Simon 1978, Kat0 1966). The only thing we have to 
verify is the periodicity properties. 

As an isolated part of a ( k l ) ,  a o ( k l )  is a periodic set. Since because of the analyticity 
the number of intersection points in every compact is finite, without loss of generality, 
we can assume that 0 is not an intersection point. Clearly, if ti is the smallest integer 
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such that Ai(2.nti) = Ai(0), then the period of A i ( k l )  is 2.nti. Since for all integers t the 
set r0(2.nt) of possible values of Ai(2.nt) does not depend on t and contains p points, 
it follows that ti s p ,  and the proof is completed. 

Lemma 1 .  Let YC be a separable Hilbert space and Jd = {z E @IlIm z /  < d,  d > 0). Let 
n ( z )  be a projection-valued analytic function in Jd satisfying: 

(i) n(2) = rI*(z) Z € R  
(ii) n(2) = n(z + 2.n) Z EJd.  
Then, there exists an analytic family A(z)  of invertible operators with the 

(a  1 A(z)II(o)A-'(z) = n ( z )  A(0) = 1 
properties: 

( b )  A*(z) = A-'(z) Z € R  

( C )  A(z + 2 ~ )  = A ( z )  z E J d .  

Remarks. (2) Without the periodicity conditions, the above result goes back to Sz-Nagy 
(1946/47) (see Kat0 1966, Reed and Simon 1978). For finite-dimensional Hilbert 
spaces, related results concerning the periodic case are given in Sibuya (1965) with 
completely different proofs. 

Proof, We shall construct A(z)  in two steps. 
The first step (Reed and Simon 1978). Let L ( z ) ,  B(z)  be given by 

dWz ) L ( z )  = i(l-2lI(z))- 
d r  

B(0)  = 1. 

(2.15) 

(2.16) 

We refer to Reed and Simon (1978) for the proof of the fact that B ( z )  is analytic 

The second step. Consider B(2.n). Since 
and invertible in Jd and satisfies the conditions ( a )  and ( b )  of lemma 1. 

B(r)rI(O)B-'(z) = n ( z )  (2.17) 

it follows from n(0j = II(2rr) that 

B ( 2 7 ) = B 1 0 B 2  (2.18) 

where the orthogonal sum is according to the decomposition 

x= rI(O)YC@(l -rI(O))YL-, (2.19) 

Since B1 and BZ are unitary operators, one can take the logarithm, i.e. there exist 
bounded self-adjoint operators C1, C2 in n ( 0 ) X  and (1 - l I (O) )7C respectively, such 
that IlC,lls 1, i = 1, 2, and 

B(2.n) = exp(2.niC) c = Cl0C2. (2.20) 

[n(O), exp(izC)] = 0. (2.21) 
Obviously [C, n(O)] = 0, and consequently, 

We claim now that the family 

A(z )  = B(z)  exp(-izC) (2.22) 
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satisfies all the conditions ( a ) - ( e )  of lemma 1. Combining (2.17) and (2.22) one 
obtains the property ( a )  for A ( z ) .  Since B ( z )  is unitary for z E R (Reed and Simon 
1978) and C is self-adjoint, it follows that A ( z )  is unitary for z ER. Since B(z) is 
analytic and invertible in Jd, A ( z )  has the same properties. Finally, using (2.16), the 
fact that n ( z )  and K(z )  are periodic and (2.21) for z = 27r, one can easily verify 
recurrently that 

-A(z)l d" =-A(z) l  d" 
dz " *=o d t "  z = 2 r  

which completes the proof. 
We are now prepared to prove the following basic proposition. 

Proposition 2. Let u o ( k l )  ={Ai(kl)}f=l, ri = m be an isolated band of Ho(kl),  and 
P o ( k l )  its corresponding spectral projection. Then, there exist a positive constant 
do > 0 and m valued vector functions xp (kl) E X', i = 1,2,  . . . , m analytic in the strip 
Jdo,  xp ( k l )  = xp (k1 + 27r) such that { V-'(kl)x?(kl)};" is an orthonormed basis in 
Po(k 1)  g. 

Remarks. (3) Proposition 2 asserts the existence of quasi-Bloch functions xp (kl) 
(Blount 1962, des Cloizeaux 1964) which are analytic and periodic in kl at k, fixed. 
For one-dimensional systems and non-degenerated bands, proposition 2 reduces to 
some fundamental results by Kohn (1959) and des Cloizeaux (1964). Let us note that 
via the Paley-Wiener theorem, proposition 2 implies the existence of Wannier func- 
tions decreasing exponentially in the u1 direction. We should like to stress that 
proposition 2 does not imply the exponential decrease of Wannier functions in all 
directions. In order to prove this, one needs the generalisation of proposition 2 
asserting the analyticity and periodicity in all variables kl, k2, k3. This is not a trivial 
problem, because of some topological difficulties. This problem is beyond the scope 
of this paper (for which the result contained in proposition 2 is sufficient) and will be 
considered elsewhere. 

Proof. From the fact that Ho(kl) is an entire function and the fact that u o ( k l )  is 
isolated, using the formula 

dz 
1 1 

Po(kl) = - 27ri c H o ( k l ) - z  

where C is a contour enclosing uo(k l ) ,  it follows that there exists do> 0 (see e.g. 
Bentosela 1979) such that Po(kl) is analytic in J6. From (2.12) and (2.13) it follows 
that 

nO(k1) = V(kl)PO(kl) V-'(kl) 

is periodic and then satisfies all the conditions of lemma 1. Let A(kl) be given by 
lemma 1 applied to IIo(kl) and kp};" be a basis in Po(0)X'. Then, from (2.12) and 
lemma 1 one can easily see that 

xP(k1) =A(k1)xP i = 1 , 2 , .  . . , m (2.23) 

have all the required properties. 



3320 A Nenciu and G Nenciu 

We shall end this section by writing Xo in a convenient form. Taking (see the 
introduction) n = (27r)-'K1, then 

Consider the Hilbert space 9? 
@ %'=I %"dkl  

C0.27rl 

with a self-explanatory notation 
0 

%'= J JBl g d k ,  

(2.24) 

(2.25) 

(2.26) 

J being the Jacobian J = (lK1l IK21 lK31)-' K1 * (K2 xK3) .  We shall denote the elements 
of k by {4m(kl)}msZ3;kic[0,27r1. Consider the operator z0 given by 

Proposition 3. Let Xo be the self-adjoint operator in L2(R3, dx) 

3 

x = 1 xjai 
i = l  

(XOf)(X) = X l f b )  

on its natural domain. Then 
@ 

UXOU-' = IB,  2 0  dk,. (2 .28)  

The simple proof of this proposition is left to the reader. 
The operator go is a self-adjoint extension of id/dkl described by somewhat 

unusual boundary conditions. The next remark is that go is related to a more familiar 
self-adjoint extension of id/dkl. Let 

(2.29) 

(remember that V(k1)  = exp(iklM)) and i(d/dkl)per, the self-adjoint operator, is given 
by 

Proposition 4. 

3-l = i(d/dkl)per +&k (2.31) 
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Proof. This is an immediate consequence of the differentiability of V(k1) and of the 
fact that 

(V(2r)l(l)ml,m,.m, = l(lml-l,m*,ma. 

3. The spectral properties of the effective Wannier Hamiltonian of arbitrary order 

Having the description of Ho and Xo, we return now to H" =Ho+&XO. It is known 
that H' is self-adjoint on 9 ( H o )  n 9 ( X o )  (Reed and Simon 1975). Denoting 

from theorem 1 and proposition 3 it follows that 
0 

UH" U-' = IB, H' (k,) dk, 

where 

A'(k,) = &k, + &20. 

(3.1) 

(3.3) 
In what follows, we shall discuss the spectral properties of fiE(kl). For notational 
convenience, we shall omit the variable kl. The zeroth-order theory developed in 
Nenciu and Nenciu (1981) applied to f ie  gives the following. Let cr0(kl) be an isolated 
band of Go, Po(kl) be the spectral projection of Ho(kl) corresponding to c~"(k1)  and 

0 

[0,2r1 
$0 = Po(kddk1. (3.4) 

Define (for the rigorous justification, see Nenciu and Nenciu (1981)) 

E o  = [i(i - 2Bo)[go, Po]n (3.5) 

where [I , . .] means the extension by continuity. SO is a bounded self-adjoint periodic 
operator, i.e. 

0 

[0,2rI 
60 = B d k d  dkl (3.6) 

and 116011 6 constant. 
Define 

2, =2o+S'o. ( 3 . 7 )  

(3.8) 

For E sufficiently small, fil has an isolated band crl(kl), which in the limit E +O 
coincides with cro(kl). Repeating the above construction, starting from fi" = fil + &zl 
one can define F1, gl, fi2, 2 2 ,  and in general, recurrently, $,,, I%,, fin+l, such that 

Note that by construction 

GE = Go + &*I) = Go + E 2 1  - E 6 0  = GI+ &21 [ f i o  + &21, $01 = 0. 

[I??, $,,I = 0. (3.9) f i E = f i n + & J i n + l - & B n ' H ,  - - w  --E& - 
We have called fi: the effective Wannier Hamiltonian of order n (see Kane (1959), 
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Wannier (1960) for heuristic discussions). The main result in Nenciu and Nenciu 
(1981) is that 

(3.10) 116, 11 sz b,E ,. 
It follows that up to terms of the order E,+ '  

f i e  -FnfiEP,,@(l -F,)fi€(l 4). (3.11) 

Note also that since Pfl6,,F,, = 0 
- W e  F,,fiFP,, = P,H, P,,. 

' W  - The main aim of this paper is to study the spectral properties of P,,H,, P,,. The reason 
is the following. Suppose that F,,fi:P,, has an eigenvalue A with the corresponding 
eigenvector t+bA. It follows from what has been said above that A ,  are the quasi- 
eigenvalue and quasi-eigenvector, respectively, of the order ( n  + 1) for f iE,  in the 
sense that 

( ( f i e t + b A  - A t + b A l l ~  b n ~ ' + l .  (3.12) 

Let (Lz([O, 2771))" be the Hilbert space 

Y,(k) be an m x m Hermitian matrix valued function on [0,277] and i(d/dk)p,, 
the usual first-order differential operator in (L2([0,  2771))" with periodic boundary 
conditions. 

Theorem 2. There exist a positive constant d, > 0, an integer m, and a unitary operator 

w : F,@+ (L2([0,  2771))" 

such that 

W F , f i : F ~ W - ' = i ~ ( d / d k ) ~ ~ ~ +  Y,,(k;&j (3.13) 

where the matrix elements of Y,(k ; E )  are restriction to k E [0,277] of analytic functions 
in the strip Jd,, satisfying 

Yn,/p(k; E )  = Yn,lp(k + 2 ~ ;  E ) .  (3.14) 

Remarks. (4) The main point of this theorem is the analyticityand periodicity properties 
of Y,(k; E ) .  At the non-rigorous level, the result in the case of non-degenerated 
bands is familiar (see e.g. Callaway 1974). At the rigorous level, for one-dimensional 
systems and non-degenerated bands, see Avron (1979), Avron et a1 (1977). In the 
three-dimensional case, and intersecting bands, even the fact that Y,,(k; E )  is bounded 
at the degeneracy points seems not to be known. 

Proof. We shall start with the proof for n = 0. 
Let { V- l (k ) , yp (k ) }Y  be the basis in P o ( k ) X '  given by proposition 2. If 4 EPO& then 

(3.15) 
/=1 
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(3.17) 

Obviously, W is unitary, and the only thing we have to do is to compute 

wF0fi:FO w-' = WFO(fiO + &20)Po w-'. 
A simple calculation shows that 

( WFOfiOFO W-'c) i (k)  = 2 (xP(k), V ( k ) H o ( k )  V- ' (k)xP(k) )xc j (k) .  (3.18) 

Now (,yP(k), V(k)Ho(k)V- ' (k)xP(k) )x ,  is the restriction to k E [0 ,2r]  of the function 

j =  1 

which is analytic in Jb and by (2.12), (2.13) and proposition 2, it is periodic with the 
period 2r. 

Using proposition 4 and the fact that $(k) are differentiable, one can see that 
the domain of W@&#o W-' is 

{{ci(k)}r;[{dcr(k)ldk);"E @*(IO, 2 ~ 1 ) ) "  ; ci(0) = c 1 ( 2 ~ ) }  

and 

( w F X # o w - l c ) j  = i z c j ( k ) +  d c [ ~ u ~ ( k ) , ~ ~ ~ ( k ) ) x , + i ( ~ ~ ( k ) , d k ~ ~ ( k ) )  ] c i ( k ) .  
d m 

I=1  x' 
(3.19) 

Note that the hermiticity of the matrix with elements i(,$(k), d,y?(k)/dk) follows 
from the fact that (xP(k ) ,  xP(k) )  = Sjl and then (d/dk)(,yP(k), xP(k) )  = 0. Again, the 
functions appearing in the right-hand side of (3.19) are the restriction of 
~ P ( ~ ) , M x P ( ~ ) ) ~ ~  and &:(6), dxP(k)/dk)w, analytic in J4. Then (3.18) and (3.19) 
proves theorem 2, with 

Y O , l p ( k ;  E )  = CuP(k), V ( k ) H o ( k ) V - ' ( k ) x : ( k ) ) ~ ,  

+ E  [kP(k), M~F(k))xt+iCuP(k), dx:(k)ldk)x,]. (3.20) 

Consider now go. Using the fact that 

m 

j = l  
(QFop-'rL)p(k) = 1 (xP(k), rL(k ) )xxg(k )  
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(3.21) 

whence it follows that V(k)Bo(k )V- ' (k )  is the restriction to [0,27r] of a bounded 
operator valued function, analytic, and periodic in J4. Then 

0 @ 

l0.2nl 10.2Trl 
A, =Ao-&&= [Ho(k)  - .5Bo(k)] dk = H l ( k )  dk 

and 
K l ( k )  = V ( k ) H l ( k )  V - ' ( k )  

is analytic and periodic in J4. 
Then, starting from A', instead of go, the whole theory developed for GO goes 

through. The formula obtained for Y1 is (3.20) where Ho(k)  has been replaced by 
H l ( k )  and x P ( k )  by the corresponding basis in V ( k ) P 1 ( k ) V - l ( k ) ,  namely x f ( k ) .  
The procedure can be repeated indefinitely and the proof of theorem 2 is finished. 

Using the arguments in Avron et a1 (1977), one can prove that the spectrum of 
iE(d/dk)pe,+ Y,,(k; E )  consists of m intertwined ladders, all with the same spacing E .  

In fact, the use of the theory of differential equations with periodic coefficients (see 
e.g. Cronin 1980) allows a rather detailed description of the eigenvalues and eigenvec- 
tors of is (dldk),,, + Y,, ( k  ; E ) .  

Let N ( k ;  E )  be the unitary m x m matrix given by the equation 

N(0;  E )  = 1 i E  d N ( k ;  E)/dk = - Y ( k ;  & ) N ( k ;  E )  (3.22) 
and 

exp( 2 r i 6, ), 6, E LO, 11; *, 4 = 1 , 2 , .  . * ,  m 

be the eigenvalues and corresponding set of orthonormal eigenvectors, respectively, 
of the unitary matrix N ( 2 7 ~ ;  E ) .  

Theorem 3. The spectrum of iE(d/dk)pe,+ Y ( k ;  E )  in (L2([0,  27r]))", where Y ( k ;  E )  

has the properties stated in theorem 2, is discrete. Its eigenvalues are given by 

s =O,*l ,  *2 , ,  * . (3.23) As,, = E (s + 6,) 4 = 1 , 2 , .  . . , m. 
A complete set of eigenvectors is given by 

+,,,(k) = K;,"' exp(is-lAs,qk)N(k; E M q  

where KS,, is the normalisation factor. 

(3.24) 

Remarks. ( 5 )  Concerning the spectrum, theorem 3 generalises the results in Avron 
(1979) and Avron et a1 (1977) to the case of three-dimensional systems, intersecting 
bands and the nth-order one-band approximation. But the main point of this theorem 
is that the components of +hs,,(k) are restrictions to k E [0,27r] of functions analytic 
and periodic in a strip Jd. 
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Proof. Since i(d/dk')pe, has a compact resolvent and Y ( k ;  E )  is bounded, it follows 
that iE(d/dk)pe,+ Y ( k ;  E )  has a compact resolvent, and then its spectrum is discrete. 
The eigenvalue problem for iE(d/dk)pe,+ Y ( k ;  E )  is equivalent to the problem of 
finding the values A, for which the evolution equation with periodic coefficients 

d 1 
dk E 

i-y(k)=--[Y(k; ~ ) - A ] y ( k )  (3.25) 

admits periodic solutions. The number of independent periodic solutions of (3.25) 
equals the multiplicity of the eigenvalue A. Let N ( k ;  E ;  A )  be the fundamental matrix 
of (3.25), i.e. 

i -N(k ;  E ; A )  = --[ Y ( k ;  E )  - A]N(k;  E ; A )  N(0;  E ;  A )  = 1. (3.26) 

The fundamental result in the theory of differential equations with periodic 
coefficients (Cronin 1980) says that the number of independent periodic solutions of 
(3.25) equals the multiplicity r of the eigenvalue 1 of N ( 2 r ;  E ;  A ) ,  and if i,hq,, . . . , $,, 
is a basis in the corresponding subspace (N(2r;  E ;  A )  is here understood as a unitary 
operator in C"), then a system of r independent periodic solutions of (3.25) is given by 

$q i (k )=N(k;  E ;  A ) 4 q i .  (3.27) 

d 1 
dk E 

Taking into account that 

d 1 
dk E 

i-N(k;e;A)= --[Y(k;e)-A]N(k;~;h)  N(O;&;A)=l (3.28) 

the verification of theorem 3 is immediate. 
Translated in the 'x representation', the analyticity and periodicity properties of 

cLs,,(k) give the exponential decay along 41. As is well known, the direct integral 
decomposition of L2(R3, dr) in the 'x representation' is 

8 
L2(R3, dx) = X ( k )  dk 

where 

It is not hard to verify that 
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From the periodicity of ,yP(kl) and @:,q : l (k l )  and the definition of V(kl), it follows 
that hmz,m3(pl)  is analytic in the strip Jdo and 

. +w+in 

which via the Paley-Wiener theorem applied to the vectorial function hm2,,, ( pl) 
implies that if 

+m 

CmZ,m,(xl) =(2r)- lI2 dpi exp(ipixi)hm,,m, (pi)  

then 

which, together with the Plancherel theorem, completes the proof. 

Remarks. (6) The result in theorem 4 extends to arbitrary n (replacing, of course, 

(7) In general, al  and K1 are not parallel, and moreover, for a given K1 there is 
a freedom in the choice of al .  However, since alKl = 27r they are not orthogonal, 
and then exponential decay along a l  is equivalent to the exponential decay along K1. 

(8) Although for all n = 0, 1, . . . the spectrum of @,,l?p,, consists of m intertwined 
sw ladders of eigenvalues, all of them having the same spacing between eigenvalues, 
it is not allowed to take the limit n + 03, because the iterative construction of @,, seems 
not to be convergent as n + 03, but only asymptotic. 

In  fact, although a direct proof of the divergence of the iterative construction of 
@,, as n + 03 does not exist, there exists an indirect one (at least, for the one-dimensional 
case): if the iterative construction of p,, converges (in norm) as n -* 00, then our results 
imply, for sufficiently small E ,  the existence of a sw ladder of eigenvalues for H E ,  and 
this contradicts the fact that the spectrum of H E  is absolutely continuous. Our results 
imply that as E + 0, the width of sw resonances decreases faster than any power of 
E .  This fits the heuristic arguments of Zener (1943), as well as recent numerical 
calculations of Bentosela et a1 (1981), giving an exponential decrease of the width of 
the sw resonances. 

(9) Our next remark concerns the existence of closed bands (Wannier and Fredkin 
1962, Wannier 1962). In spite of the strong criticism of Zak (1968) and the recognition 
by Wannier (1969) that the problem might be more complicated, it seems that there 

do by dn). 



Dynamics of Bloch electrons in external electric fields: II 3327 

exists a widespread opinion (Callaway 1974) that, without relying on power expansions 
in the field strength, one can prove rigorously that Bloch bands closed in time exist. 
We shall point out below that, due to a tacitly assumed hypothesis which turns out 
to be wrong, the existence of bona fide Bloch bands (i.e. indexed by a discrete index) 
closed in time does not follow from the Wannier and Fredkin arguments. Although 
in a different form, our argument is the same as the argument of Zak (1968). For 
simplicity, we shall consider the one-dimensional case and assume that the periodic 
potential V ( x ) =  V ( x + a )  is twice differentiable. The basic idea of Wannier and 
Fredkin is to consider the operator 

(9 = exp(-i2.rr(Ea)-'~"). 

It is easy to see that (9 commutes with the translation operator ((T,f)(x) = f ( x + a ) ) ,  
so that (9 can be written as a direct integral over the Brillouin zone 

(9 = @ ( k )  dk. 

Wannier and Fredkin (see also Wannier 1962,1969) tacitly assumed that the spectrum 
of @(k) is discrete, whence the existence of the closed bands as well as of the sw 
ladder follows. Unfortunately, the fact that the spectrum of H E  is absolutely continuous 
(Avron et a1 1977) implies that the spectrum of @ ( k )  is continuous (i.e. (9(k) has no 
eigenvalues) for all k E B .  Indeed, suppose @(ko) has the eigenvalue Ao,  for some 
ko E B. Then, an argument of Wannier (1969) shows that A. is an (infinitely degener- 
ated) eigenvalue of (9. On the other hand, the fact that the spectrum of H' is absolutely 
continuous implies, via the spectral theory, that (9 has only a continuous spectrum. 

(10) Finally, let us mention some other mathematical approaches. For a complex 
field (Im E # 0) Avron (1979) proved the existence of sw ladder eigenvalues. For real 
E and periodic potentials with some analytic properties Herbst and Howland (1981) 
proved that certain matrix elements of (H" - z)-' have meromorphic continuation 
from Im z > O  to Im z < O .  One can hope that this continuation has ladder poles in 
order to describe the sw resonances. However, besides the restriction to one- 
dimensional systems, one expects the proofs to be rather complicated. 
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